Maven组件如下:
org.apache.spark spark-streaming-kafka-0-10_2.11 2.3.0
官网代码如下:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // scalastyle:off println package org.apache.spark.examples.streaming import org.apache.spark.SparkConf import org.apache.spark.streaming._ import org.apache.spark.streaming.kafka010._ /** * Consumes messages from one or more topics in Kafka and does wordcount. * Usage: DirectKafkaWordCount* is a list of one or more Kafka brokers * is a list of one or more kafka topics to consume from * * Example: * $ bin/run-example streaming.DirectKafkaWordCount broker1-host:port,broker2-host:port \ * topic1,topic2 */ object DirectKafkaWordCount { def main(args: Array[String]) { if (args.length < 2) { System.err.println(s""" |Usage: DirectKafkaWordCount | is a list of one or more Kafka brokers | is a list of one or more kafka topics to consume from | """.stripMargin) System.exit(1) } StreamingExamples.setStreamingLogLevels() val Array(brokers, topics) = args // Create context with 2 second batch interval val sparkConf = new SparkConf().setAppName("DirectKafkaWordCount") val ssc = new StreamingContext(sparkConf, Seconds(2)) // Create direct kafka stream with brokers and topics val topicsSet = topics.split(",").toSet val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers) val messages = KafkaUtils.createDirectStream[String, String]( ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topicsSet, kafkaParams)) // Get the lines, split them into words, count the words and print val lines = messages.map(_.value) val words = lines.flatMap(_.split(" ")) val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _) wordCounts.print() // Start the computation ssc.start() ssc.awaitTermination() } } // scalastyle:on println
运行以上代码出现如下错误等:
Exception in thread "main" org.apache.kafka.common.config.ConfigException: Missing required configuration "bootstrap.servers" which has no default value.
由错误可见,是因为没有设置kafka相关参数。
把官网代码修改如下:
package cn.xdf.userprofile.stream import org.apache.spark.SparkConf import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.streaming.kafka010._ import scala.collection.mutable object DirectKafka { def main(args: Array[String]): Unit = { if (args.length < 2) { System.err.println( s""" |Usage: DirectKafkaWordCount| is a list of one or more Kafka brokers | is a list of one or more kafka topics to consume from | """.stripMargin) System.exit(1) } val Array(brokers,topics)=args var conf = new SparkConf() .setAppName("DirectKafka") .setMaster("local[2]") val ssc = new StreamingContext(conf, Seconds(2)) val topicsSet=topics.split(",").toSet val kafkaParams=mutable.HashMap[String,String]() //必须添加以下参数,否则会报错 kafkaParams.put("bootstrap.servers" ,brokers) kafkaParams.put("group.id", "group1") kafkaParams.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer") kafkaParams.put("value.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer") val messages=KafkaUtils.createDirectStream [String,String]( ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String,String](topicsSet,kafkaParams ) ) // Get the lines, split them into words, count the words and print val lines = messages.map(_.value) val words = lines.flatMap(_.split(" ")) val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _) wordCounts.print() // Start the computation ssc.start() ssc.awaitTermination() } }
运行过程如下:
启动kafka
bin/kafka-server-start ./etc/kafka/server.properties &
[2018-10-22 11:24:14,748] INFO [GroupCoordinator 0]: Stabilized group group1 generation 1 (__consumer_offsets-40) (kafka.coordinator.group.GroupCoordinator)
[2018-10-22 11:24:14,761] INFO [GroupCoordinator 0]: Assignment received from leader for group group1 for generation 1 (kafka.coordinator.group.GroupCoordinator)
[2018-10-22 11:24:14,779] INFO Updated PartitionLeaderEpoch. New: {epoch:0, offset:0}, Current: {epoch:-1, offset-1} for Partition: __consumer_offsets-40. Cache now contains 0 entries. (kafka.server.epoch.LeaderEpochFileCache)
[2018-10-22 11:28:19,010] INFO [GroupCoordinator 0]: Preparing to rebalance group group1 with old generation 1 (__consumer_offsets-40) (kafka.coordinator.group.GroupCoordinator)
[2018-10-22 11:28:19,013] INFO [GroupCoordinator 0]: Group group1 with generation 2 is now empty (__consumer_offsets-40) (kafka.coordinator.group.GroupCoordinator)
[2018-10-22 11:29:29,424] INFO [GroupMetadataManager brokerId=0] Removed 0 expired offsets in 11 milliseconds. (kafka.coordinator.group.GroupMetadataManager)
[2018-10-22 11:39:29,414] INFO [GroupMetadataManager brokerId=0] Removed 0 expired offsets in 1 milliseconds. (kafka.coordinator.group.GroupMetadataManager)
[2018-10-22 11:49:29,414] INFO [GroupMetadataManager brokerId=0] Removed 0 expired offsets in 1 milliseconds. (kafka.coordinator.group.GroupMetadataManager)
运行spark
/usr/local/spark-2.3.0/bin/spark-submit --class cn.xdf.userprofile.stream.DirectKafka --master yarn --driver-memory 2g --num-executors 1 --executor-memory 2g --executor-cores 1 userprofile2.0.jar localhost:9092 test
2018-10-22 11:28:16 INFO DAGScheduler:54 - Submitting 1 missing tasks from ResultStage 483 (ShuffledRDD[604] at reduceByKey at DirectKafka.scala:46) (first 15 tasks are for partitions Vector(1))
2018-10-22 11:28:16 INFO TaskSchedulerImpl:54 - Adding task set 483.0 with 1 tasks
2018-10-22 11:28:16 INFO TaskSetManager:54 - Starting task 0.0 in stage 483.0 (TID 362, localhost, executor driver, partition 1, PROCESS_LOCAL, 7649 bytes)
2018-10-22 11:28:16 INFO Executor:54 - Running task 0.0 in stage 483.0 (TID 362)
2018-10-22 11:28:16 INFO ShuffleBlockFetcherIterator:54 - Getting 0 non-empty blocks out of 1 blocks
2018-10-22 11:28:16 INFO ShuffleBlockFetcherIterator:54 - Started 0 remote fetches in 0 ms
2018-10-22 11:28:16 INFO Executor:54 - Finished task 0.0 in stage 483.0 (TID 362). 1091 bytes result sent to driver
2018-10-22 11:28:16 INFO TaskSetManager:54 - Finished task 0.0 in stage 483.0 (TID 362) in 4 ms on localhost (executor driver) (1/1)
2018-10-22 11:28:16 INFO TaskSchedulerImpl:54 - Removed TaskSet 483.0, whose tasks have all completed, from pool
2018-10-22 11:28:16 INFO DAGScheduler:54 - ResultStage 483 (print at DirectKafka.scala:47) finished in 0.008 s
2018-10-22 11:28:16 INFO DAGScheduler:54 - Job 241 finished: print at DirectKafka.scala:47, took 0.009993 s
-------------------------------------------
Time: 1540178896000 ms
-------------------------------------------
启动生产者
[root@master kafka_2.11-1.0.0]# bin/kafka-console-producer.sh --topic test --broker-list localhost:9092
> hello you
> hello me
查看结果:
(hello,2)
(me,1)
(you,1)
2018-10-22 11:57:08 INFO JobScheduler:54 - Finished job streaming job 1540180628000 ms.0 from job set of time 1540180628000 ms
2018-10-22 11:57:08 INFO JobScheduler:54 - Total delay: 0.119 s for time 1540180628000 ms (execution: 0.072 s)
2018-10-22 11:57:08 INFO ShuffledRDD:54 - Removing RDD 154 from persistence list
2018-10-22 11:57:08 INFO MapPartitionsRDD:54 - Removing RDD 153 from persistence list
2018-10-22 11:57:08 INFO BlockManager:54 - Removing RDD 153
2018-10-22 11:57:08 INFO BlockManager:54 - Removing RDD 154
2018-10-22 11:57:08 INFO MapPartitionsRDD:54 - Removing RDD 152 from persistence list
2018-10-22 11:57:08 INFO BlockManager:54 - Removing RDD 152
2018-10-22 11:57:08 INFO MapPartitionsRDD:54 - Removing RDD 151 from persistence list
2018-10-22 11:57:08 INFO BlockManager:54 - Removing RDD 151
2018-10-22 11:57:08 INFO KafkaRDD:54 - Removing RDD 150 from persistence list
2018-10-22 11:57:08 INFO BlockManager:54 - Removing RDD 150